
Advances in Computer Science and Information Technology (ACSIT)
Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014 pp. 86-89
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/acsit.html

An Anecdote to Automated Test Case Generation
Techniques using GUI and Mutation Testing

Kumar Gaurav

1Maharaja Surajamal Institute Janak Puri New Delhi
E-mail: kgsingh81@gmail.com

Abstract: Software testing has been defined by various eminent
scholars in the past. A definition by Abran and Moore (2004) defines
testing as “an activity performed for evaluating product quality and
for improving it, by identifying defects and problems”. Further,
automation in software testing involves use of special software to
control the execution of tests and the comparison of actual outcomes
with predicted outcomes. Test automation can automate some
repetitive but necessary tasks in a formalized testing process already
in place, or add additional testing that would be difficult to perform
manually. The broad areas of testing are code driven testing, GUI
testing and API driven testing.
 Automated GUI became prominent because of issues raised with
Manual GUI testing. An Automated GUI Testing tool can playback
all the recorded set of tasks, compare the results of execution with the
expected behavior and report success or failure to the test engineers.
Once the GUI tests are created they can easily be repeated for
multiple numbers of times with different data sets and can be
extended to cover additional features at a later time. Automated GUI
Testing is a more accurate, efficient, reliable and cost effective
replacement to manual testing.
Mutation testing is another method of software testing in which
program or source code is deliberately manipulated, followed by
suite of testing against the mutated code. The mutations introduced to
source code are designed to imitate common programming errors. A
good unit test suite typically detects the program mutations and fails
automatically.This paper makes an attempt to review the extant
literature and explore test case generation techniques based on GUI
and mutation testing.

Keywords: Testing, GUI, Mutation testing

1. INTRODUCTION

Some software testing tasks, such as extensive low-level
interface regression testing, can be laborious and time
consuming to do manually. In addition, a manual approach
might not always be effective in finding certain classes of
defects. Test automation offers a possibility to perform these
types of testing effectively. Once automated tests have been
developed, they can be run quickly and repeatedly. This paper
makes an attempt to review the extant literature and explore
test case generation techniques based on GUI and mutation
testing.

2. SOFTWARE TESTING

According to the IEEE Software Engineering Body of
Knowledge testing is “anactivity performed for evaluating
product quality, and for improving it, by identifying defects
and problems.

Software testing consists of the dynamic verification of the
behavior of a program. Myers (1979)defines testing as “the
process of executing a program with the intent of finding
errors”. According toAmmann and Offutt (2008) testing means
“evaluating software by observing its execution”. Utting
andLegeard (2007) names testing “the activity of executing a
system in order to detect failures”. Whittaker(2000) says that
“software testing is the process of executing a software system
to determine whether itmatches its specification and executes
in its indented environment”.All these definitions show that
the inherent nature of software testing is the execution of the
implementationunder test.Further, the purpose of testing is to
identifyfailures and problems when the software does not
behave as expected.

2.1 Approaches to Test Automation

In software testing, test automation is the use of special
software to control the execution of tests and the comparison
of actual outcomes with predicted outcomes. Test automation
can automate some repetitive but necessary tasks in a
formalized testing process already in place, or add additional
testing that would be difficult to perform manually. There are
many approaches to test automation; however below are the
general approaches used widely:

Code-driven testing: The public interfaces to classes, modules
or libraries are tested with a variety of input arguments to
validate that the results that are returned are correct.

GUI testing: A testing framework generates user interface
events such as keystrokes and mouse clicks, and observes the
changes that result in the user interface, to validate that the
observable behavior of the program is correct.

An Anecdote to Automated Test Case Generation Techniques using GUI and Mutation Testing 87

Advances in Computer Science and Information Technology (ACSIT)

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014

API driven testing: A testing framework that uses
programming interface of the application to validate, the
behavior under test. Typically API driven testing bypasses
application user interface altogether.

Code-driven testing: A growing trend in software development
is the use of testing frameworks such as the xUnit frameworks
(for example, JUnit and NUnit) that allow the execution of
unit tests to determine whether various sections of the code are
acting as expected under various circumstances. Code driven
test automation is a key feature of agile software development,
where it is known as test-driven development (TDD). Unit
tests are written to define the functionality before the code is
written. However, these unit tests evolve and are extended as
coding progresses, issues are discovered and the code is
subjected to refactoring. Only when all the tests for all the
demanded features pass is the code considered complete.

Graphical User Interface (GUI) testing

Many test automation tools provide record and playback
features that allow users to interactively record user actions
and replay them back any number of times, comparing actual
results to those expected. The advantage of this approach is
that it requires little or no software development. This
approach can be applied to any application that has a GUI.
However, reliance on these features poses major reliability and
maintainability problems. Relabelling a button or moving it to
another part of the window may require the test to be re-
recorded. Record and playback also often adds irrelevant
activities or incorrectly records some activities.

A variation on this type of tool is for testing of websites. Here,
the “interface” is the webpage. This type of tool also requires
little or no software development. However such a framework
utilizes entirely different techniques because it is reading
HTML instead of observing window events.

Another variation is script-less test automation that does not
use record and playback, but instead builds a model of the
Application Under Test(AUT) and then enables the tester to
create test cases by editing in test parameters and
conditions.This requires no scripting skills, but has all the
power and flexibility of a scripted approach.] Test-case
maintenance seems to be easy, as there is no code to maintain
and as the AUT changes the software object objects can
simply be re-learned or added. It can be applied to any GUI-
based software application.] Theproblem is the model of AUT
is actually implemented using test scripts, which have to be
constantly maintained whenever there is change to the AUT.

API driven testing: API driven testing is also being widely
used by software testers as it’s becoming tricky to create and
maintain GUI-based automation testing. Programmers or
testers write scripts using a programming or scripting
language that calls interface exposed by the application under

test. These interfaces are custom built or commonly available
interfaces like COM, HTTP, and Command line interface. The
test scripts created are executed using an automation
framework or a programming language to compare test results
with expected behaviour of the application.

2.1.1 The Testing Process

Software testing in various stages of the development lifecycle
constitutes of three parts: selection or generation of specific
test cases, execution of these test cases, and evaluation of not
only the quality of the software under test but also of the test
cases themselves. That is, the test effort also needs to be
evaluated for its thoroughness.

Test case generation involves selecting a particular set of test
cases (a test suite) within an often practically infinite domain
of program execution. Various mechanisms for systematically
generating test cases with different selection criteria have been
proposed, but test case generation is still often left to the
programmer. It is no surprise that test case execution, being
the most amenable to automation, has the most sophisticated
automation tools available.

When test cases are executed, it should achieve the twofold
goal of finding defects, andincreasing confidence in the
quality of the software under test. To detect defects, it mustbe
possible to compare the state of the computation after a test
case is run with a specified expected state. Often this
comparison is done by consulting an oracle—a software
artifact that decides whether a test case has passed or failed.
Oracles themselves are often either manually constructed, or
automatically derived from a software system’s specifications.

Even if no defects were found during testing, however, no
guarantee can be made that the software under test is defect-
free. That testing can show the presence of bugs but not their
absence [1]. However, we can have some metrics that give a
sense of the defect revealing capabilities of our test suite.
Various program coverage metrics have been traditionally
used for this.

3. AUTOMATED TEST CASE GENERATION- A
REVIEW

The main aim of this paper is to present various techniques
available for test case generation.GUI based testing and
mutation testing have been specifically chosen through extant
literature review.

3.1 GUI Testing

 Although the use of GUIs continues to grow, GUI testing has
remained a neglected research area. GUI based testing is still
in a nascent stage and little research has been done in this area.
But there is potential to use techniques from general software

Kumar Gaurav

Advances in Computer Science and Information Technology (ACSIT)

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014

88

testing and tailor them for GUI testing. A number of research
efforts have addressed the automation of the test case
generation for GUIs. Several finite-state machine (FSM)
models have been proposed to generate test cases [2, 3]. In this
approach, the software’s behaviour is modelled as a FSM
where each input triggers a transition in the FSM. A path in the
FSM represents a test case, and the FSM’s states are used to
verify the software’s state during test case execution.This
approach has been used extensively for test generation of
hardware circuits [4].

Avritzer et al. [5] have proposed a technique for software load
testing, which hascharacteristics that may be relevant to GUI
testing. This technique assesses how the system performs
under a given load.The goal of this technique is to generate
test cases to test software’s resource allocation strategies
rather than its functionality. Load testing is done after the
software has been thoroughly tested for correctness of
functionality. The testcase generation process uses an
operational profile that describes the expected workload of the
software once it is operational. The operational profile consists
of the number andtypes of inputs to the software, the
probability distribution of each type of input, and the average
input arrival rate. This type of testing is attractive for GUIs
since it is possible to obtain similar profiles from user sessions
recorded during usability testing. However, amajor limitation
of this technique is that the software has to be represented by a
Markovchain model. GUIs have a large number of states, and
a state description that encodes asequence of states may be
impractical.

3.2 Mutation Testing

Mutation Testing is a fault-based testing technique which
provides a testing criterion called the “mutation adequacy
score”. Themutation adequacy score can be used to measure
the effectiveness of a test set in terms of its ability to detect
faults. The general principle underlying Mutation Testing
work is that the faults used by Mutation Testing represent the
mistakes that programmers often make. By carefully choosing
the location andtype of mutant, we can also simulate any test
adequacy criteria.Such faults are deliberately seeded into the
original program, by simple syntactic changes, to create a set
of faulty programs called mutants, each containing a different
syntactic change. To assessthe quality of a given test set, these
mutants are executed against the input test set. If the result of
running a mutant is differentfrom the result of running the
original program for any test casesin the input test set, the
seeded fault denoted by the mutant isdetected. One outcome of
the Mutation Testing process is mutation score, which
indicates the quality of input test set. The One outcome of the
Mutation Testing process is themutation score, which indicates
the quality of the input test set.The mutation score is the ratio
of the number of detected faultsover the total number of the
seeded faults.

The history of Mutation Testing can be traced back to 1971 ina
student paper by Richard Lipton [144]. The birth of the
fieldcan also be identified in papers published in the late
1970s byDeMillo et al. [66] and Hamlet [107].Mutation
Testing can be used for testing software at the unitlevel, the
integration level and the specification level. It has beenapplied
to many programming languages as a white box unit
testtechnique, for example, C programs [6], [7],[8], [9], [10]
Java programs [11], [12], [13], [14], C# programs [15]–[19],
SQL code [20], [21],[23], [24] and AspectJ programs [25],
[26], [27]. Besides using Mutation Testing at the software
implementationlevel, it has also been applied at the design
level to test thespecifications or models of a program. For
example, at the designlevel Mutation Testing has been applied
to Finite State Machines[28], [29], [30], Security Policies [31],
[32], [33], and Web Services. Mutation Testing has been
increasingly and widely studiedsince it was first proposed in
the 1970s. There has been muchresearch work on the various
kinds of techniques seeking toturn Mutation Testing into a
practical testing approach. However,there is little survey work
in the literature on Mutation Testing.

4. CONCLUSION

Both the GUI based testing and Mutation testing has not been
extensively reviewed in the past. Both the techniques have
numerous applications as researched upon the authors in the
past. The paper outlines these applications which can be of
help in future works.

REFERENCES

[1] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,
“The Design of a Prototype Mutation System for Program
Testing,” in Proceedings of the AFIPS National Computer
Conference, vol. 74. Anaheim, New Jersey: ACM, 5-8 June
1978, pp. 623–627.

[2] Chow, T. S., “Testing software design modeled by finite-state
machines”, IEEE trans. on Software Engineering SE-4, 3 (1978),
pp.178-187.

[3] Clarke, J. M., “Automated test generation from a behavioral
model”, In Proceedings of Pacific Northwest Software Quality
Conference (May 1998), IEEE Press.

[4] H. Cho, G.D. Hachtel and F. Somenzi, “Redundancy
identification/removal and test generation for sequential circuits
using implicit state enumeration”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 12,
7 (July 1993), pp. 935- 945.

[5] Avritzer, A., and Weyuker, E. J., “The automatic generation of
load test suites and the assessment of the resulting software”,
IEEE Transactions on Software Engineering 21, 9 (Sept. 1995),
pp. 705- 716.

[6] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E.
W. Krauser, R. J. Martin, A. P. Mathur, and E. Spafford, “Design
of Mutant Operators for the C Programming Language,” Purdue
University, West Lafayette, Indiana, Technique Report SERC-
TR-41-P, March 1989

An Anecdote to Automated Test Case Generation Techniques using GUI and Mutation Testing 89

Advances in Computer Science and Information Technology (ACSIT)

Print ISSN: 2393-9907; Online ISSN: 2393-9915; Volume 1, Number 2; November, 2014

[7] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface
Mutation: An Approach for Integration Testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 3, pp. 228–
247, May 2001.

[8] A. K. Ghosh, T. O‘Connor, and G. McGraw, “An Automated
Approach for Identifying Potential Vulnerabilities in Software,”
in Proceedings of the IEEE Symposium on Security and Privacy
(S&P’98), Oakland, California, 3-6 May 1998, pp. 104–114.

[9] H. Shahriar and M. Zulkernine, “Mutation-Based Testing of
Buffer Overflow Vulnerabilities,” in Proceedings of the 2nd
Annual IEEE International Workshop on Security in Software
Engineering, 28 July -1 August, Turku, Finland 2008, pp. 979–
984.

[10] H. Shahriar and M. Zulkernine, “Mutation-Based Testing of
Format String Bugs,” in Proceedings of the 11th IEEE High
Assurance SystemsEngineering Symposium (HASE’08), Nanjing,
China, 3-5 Dec 2008, pp. 229–238

[11] P. Chevalley, “Applying Mutation Analysis for Object-oriented
Programs Using a Reflective Approach,” in Proceedings of the
8th Asia-Pacific Software Engineering Conference (APSEC 01),
Macau, China, 4-7 December 2001, p. 267.

[12] P. Chevalley and P. Th´evenod-Fosse, “A Mutation Analysis
Tool for Java Programs,” International Journal on Software
Tools for Technology Transfer, vol. 5, no. 1, pp. 90–103,
November 2002.

[13] Y.-S. Ma, Y.-R. Kwon, and A. J. Offutt, “Inter-class Mutation
Operators for Java,” in Proceedings of the 13th International
Symposium on Software Reliability Engineering (ISSRE’02).
Annapolis, Maryland: IEEE Computer Society, 12-15 November
2002, p. 352.

[14] Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon, “MuJava: An Automated
Class Mutation System,” Software Testing, Verification &
Reliability, vol. 15, no. 2, pp. 97–133, June 2005.

[15] A. Derezi´nska, “Object-oriented Mutation to Assess the Quality
of Tests,” in Proceedings of the 29th Euromicro Conference,
Belek, Turkey, 1-6 September 2003, pp. 417– 420.

[16] A. Derezi´nska, “Advanced Mutation Operators Applicable in
C# Programs,” Warsaw University of Technology, Warszawa,
Poland, Technique Report, 2005.

[17] A. Derezi´nska, “Quality Assessment of Mutation Operators
Dedicated for C# Programs,” in Proceedings of the 6th
International Conference on Quality Software (QSIC’06),
Beijing, China, 27-28 October 2006.

[18] A. Derezi´nska and A. Szustek, “CREAM- A System for Object-
Oriented Mutation of C# Programs,” Warsaw University of
Technology, Warszawa, Poland, Technique Report, 2007.

[19] A. Derezi´nska and A. Szustek, “Tool-Supported Advanced
Mutation Approach for Verification of C# Programs,” in
Proceedings of the 3th International Conference on
Dependability of Computer Systems (DepCoS-RELCOMEX’08),
Szklarska Porˆeba, Poland, 26-28 June 2008, pp. 261–268.

[20] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-Based Testing
of Database Application Programs with Conceptual Data
Model,” in Proceedings of the 5th International Conference on
Quality Software (QSIC’05), Melbourne, Australia, 19 -20
September 2005, pp. 187–196.

[21] H. Shahriar and M. Zulkernine, “MUSIC: Mutation-based SQL
Injection Vulnerability Checking,” in Proceedings of the 8th

International Conference on Quality Software (QSIC’08),
Oxford, UK, 12-13 August 2008, pp. 77–86.

[22] J. Tuya, M. J. S. Cabal, and C. de la Riva, “SQLMutation: A
Tool to Generate Mutants of SQL Database Queries,” in
Proceedings of the 2nd Workshop on Mutation Analysis
MUTATION’06). Raleigh, North Carolina: IEEE Computer
Society, November 2006, p. 1.

[23] J. Tuya, M. J. S. Cabal, and C. de la Riva, “Mutating Database
Queries,” Information and Software Technology, vol. 49, no. 4,
pp. 398–417, April 2007.

[24] S. Lee, X. Bai, and Y. Chen, “Automatic Mutation Testing and
Simulation on OWL-S Specified Web Services,” in Proceedings
of the 41st Annual Simulation Symposium (ANSS’08), Ottawa,
Canada., 14-16 April 2008, pp. 149–156.

[25] S. D. Lee, “Weak vs. Strong: An Empirical Comparison of
Mutation Variants,” Masters Thesis, Clemson University,
Clemson, SC, 1991.

[26] S. C. Lee and A. J. Offutt, “Generating Test Cases for XML-
Based Web Component Interactions Using Mutation Analysis,”
in Proceedings of the 12th International Symposium on Software
Reliability Engineering (ISSRE’01), Hong Kong, China,
November 2001, pp. 200–209.

[27] J. B. Li and J. Miller, “Testing the Semantics of W3C XML
Schema,” in Proceedings of the 29th Annual International
Computer Software and Applications Conference
(COMPSAC’05), Turku, Finland, 26-28 July 2005, pp. 443–448.

[28] S. S. Batth, E. R. Vieira, A. R. Cavalli, and M. U. Uyar,
“Specificationof Timed EFSM Fault Models in SDL,” in
Proceedings of the 27th IFIPWG 6.1 International Conference
on Formal Techniques for Networkedand Distributed Systems
(FORTE’07), ser. LNCS, vol. 4574. Tallinn,Estonia: Springer,
26-29 June 2007, pp. 50–65.

[29] N. Bombieri, F. Fummi, and G. Pravadelli, “A Mutation Model
forthe SystemC TLM2.0 Communication Interfaces,” in
Proceedings ofthe Conference on Design, Automation and Test
in Europe (DATE’08),Munich, Germany, 10-14 March 2008, pp.
396–401.

[30] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P.
Masiero, “MutationAnalysis Testing for Finite State Machines,”
in Proceedings ofthe 5th International Symposium on Software
Reliability Engineering,Monterey, California, 6-9 November
1994, pp. 220–229.

[31] Y. Le Traon, T. Mouelhi, and B. Baudry, “Testing Security
Policies:Going Beyond Functional Testing,” in The 18th IEEE
InternationalSymposium on Software Reliability. Trollh¨attan,
Sweden: IEEEComputer Society, 5-9 November 2007, pp. 93–
102.

[32] T. Mouelhi, F. Fleurey, and B. Baudry, “A Generic Metamodel
ForSecurity Policies Mutation,” in Proceedings of the IEEE
InternationalConference on Software Testing Verification and
Validation Workshop.IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 29(ICSTW’08). Lillehammer, Norway: IEEE
Computer Society, 9-11April 2008, pp. 278–286.

[33] T. Mouelhi, Y. Le Traon, and B. Baudry, “Mutation Analysis
forSecurity Tests Qualification,” in Proceedings of the 3rd
Workshop onMutation Analysis (MUTATION’07), published
with Proceedings ofthe 2nd Testing: Academic and Industrial
Conference Practice andResearch Techniques (TAIC PART’07).
Windsor, UK: IEEE ComputerSociety, 10-14 September 2007,
pp. 233–242.

